DIGITAL TECTONICS

Algorithmic Forms & Generative Algorithm Modelling

K-Arts 2018 Media Studio 4: Advanced Computer Techniques

복잡계에 대해서 알아야 할 모든 것은 정보의 처리 과정으로 이해될 수 있다. - 세스 로이드, 2001

Everything that's worth understanding about a complex system can be understood in terms of how it processes information.

- Seth Lloyd, 2001

강의 배경

미디어 스튜디오 4는 미디어 스튜디오 3의 연장선상에서 건축설계의 툴로서 컴퓨터의 활용 범위와 가능성을 지속적으로 탐구한다.

강의 목표

최근 건축설계의 한 가지 방법론으로 자리잡은 제너러티브 알고리듬(generative algorithm)을 이용한 모델링 기법을 중심으로 버저닝(versioning) 작업을 통한 형태 만들기(form-making)와 최적화(optimising) 작업을 통한 형태 찾기(form-finding)의 과정을 이해하고 이를 실제 프로젝트에 적용한다.

Why Do We Learn Generative Algorithm Modelling?

In Historical Context: Need for New Decoration?

New Science: Understanding Nature

Associating Information: Mapping and Datascape

Controlling Complexity and Informality

Why Do We Learn Generative Algorithm Modelling?

In Historical Context: Need for New Decoration?

New Science: Understanding Nature

Associating Information: Mapping and Datascape

Controlling Complexity and Informality

Formalism $\langle ---- \rangle$ Expressionism

Less Decorative $\langle ---- \rangle$ More Decorative

Abstract $\langle ---- \rangle$ Representational

Romanesque – Gothic – Renaissance – Baroque/Rococo – Neoclassicism – Romanticism/Gothic Revival

Early Modernism - Expressionism - International Style - Post Modernism - Neo Modernism

What Next?

Why Do We Learn Generative Algorithm Modelling?

In Historical Context: Need for New Decoration?

New Science: Understanding Nature

Associating Information: Mapping and Datascape

Controlling Complexity and Informality

James Gleick, 1987

An effort to explain and theorise the complexity of Nature

Philip Ball, 2011

Nature's Patterns Trilogy: Morphology based on Algorithmic Forms Strange Attractor (Lorenz's Attractor)

f(t, (x, v)) = (x + tv, v)

Fractal Patterns

Fractal Generator

Sketches of Radiolarians: Ernst Haeckel (1834–1919)

Contemporary Digital Generative Art

Why Do We Learn Generative Algorithm Modelling?

In Historical Context: Need for New Decoration?

New Science: Understanding Nature

Associating Information: Mapping and Datascape

Controlling Complexity and Informality

Mapping and Datascape: Revealing Hidden Reality

Wind Map of North America

Transportation Map of San Francisco

Racial Map of Brooklyn

Information / Data ---- Design / Form ?

Why Do We Learn Generative Algorithm Modelling?

In Historical Context: Need for New Decoration?

New Science: Understanding Nature

Associating Information: Mapping and Datascape

Controlling Complexity and Informality

Logic behind Complexity and Informality

Logic behind Complexity and Informality (?)

Media Studio 4: Advanced Computer Techniques

DIGITAL TECTONICS: Algorithmic Forms & Generative Algorithm Modelling

Serpentine Gallery Pavilion 2002: Toyo Ito

The Great Court, The British Museum

Generative Algorithm Modelling

A new way to control complexity and informality via computerised algorithm and parameters, for intuitive, efficient and information based design decision making

직관적이고 효과적이며 정보에 기반을 둔 디자인 결정을 위해 자동 계산되는 논리체계와 변수를 사용하여 복잡성과 비정형성을 다루는 새로운 방법

Terminology

Versioning

다양한 디자인 조건에 따라 특정한 해를 결정하는 작업 Process of creating versions of certain design solutions based on varying conditions

Optimisation

반복 작업 (iteration)을 통해 최적의 해를 찾아가는 과정

Process of finding optimal solutions by repearting/cycling a certain set of steps (iteration)

Nonlinearity

비결정론적인 역학계를 서술하는 수학적 특성 Mathematical characterisric which describes indeterminate system

Open Narratives

비결정성에 바탕을 둔 열린 텍스트로서의 도시건축적 장치 Urban architecture as a type of open text based on the idea of indeterminacy

Techniques of Generative Algorithm Modelling

Subdivision

Topology

Packing

Weaving

질문: 형태 생성에 관여하는 정보가 수학적/논리적으로 연산 가능한가? Question: Is the information that generates a form computational? Attractor

Cholula Student Housing, BNKR Arquitectura, 2012

Recursion / Repetition

Recursive Growth Series 02, THEVERYMANY, 2008

Force Field

Tiling

Federation Square, Lab Architecture Studio, 2002

Ravensbourne College, FOA, 2010

Tessellation

Liverpool Museum, 3XN, 2011

Subdivision

Topology

Packing

(Packed), ETH Zurich Students, 2011

Weaving

Aragon Pavilion, Olano y Mendo Arquitectos, 2008

Centre Pompidou-Metz, Shigeru Ban Architects, 2010

Controller

Quadracci Pavilion, Milwaukee Art Museum , Santiago Calatrava, 2001

Branching

Interior of Sagrada Familia, Antonio Gaudi, 1883-

The Tote, Serie Architects, 2009

과제 / Personal Project

1. 2D 패턴

도시조직에서 바닥패턴까지 스케일에 관계 없이 제너러티브 알고리듬으로 구성된 2D 패턴으로 개념, 최종결과물은 렌더링되지 않은 2D 이미지로 표현.

2. **입면패턴**

커튼월, 루버, 외장재 등 건축물의 입면을 이루는 구성요소의 일부 또는 전체를 제너러티브 알고리듬을 이용하여 제안. 최종결과는 렌더링된 2D 이미지로 표현.

3. 구조체

건축물 / 조형물 / 공작물의 구조체 일부 또는 전체를 제너러티브 알고리듬을 이용하여 제안. 대상은 제한 없으며 최종결과는 직접 제작 또는 3D 프린팅된 물리적 모델.

- 권장사항: 과제의 아이디어를 해당 학기에 진행하는 설계수업에 최대한 적용할 것.

Media Studio 4: Advanced Computer Techniques

